

"Artillery, Air Defence and CIS" Faculty

Acronym: NMU

Address: 1 Karel Shkorpil str., P.O. Box 9700

City: Shumen

Country: BULGARIA

NMU has two faculties – "Land Forces" Faculty and "Artillery, Air Defence and CIS" Faculty.

The "Artillery, Air Defence and CIS" Faculty in Shumen is

involved in the EuCTS_DS project.

The faculty has seven departments:

- Field Artillery;
- Military Armament;
- Anti-aircraft defense;
- Computer systems and technologies;
- Communication networks and systems;
- Information security;

Foreign language department.

"Artillery, Air Defence and CIS" Faculty

The "Artillery, Air Defence and CIS" Faculty offers the following military specialties for a Bachelor degree:

- Field Artillery;
- Military Armament;
- Topo geodetic instrumental intelligence;
- Aircraft defense;
- Missile troops
- Radiolocation;
- Military communication and information systems.

"Artillery, Air Defence and CIS" Faculty

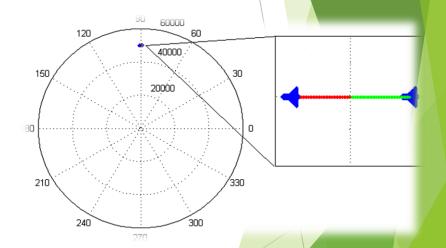
The "Artillery, Air Defence and CIS" Faculty offers the following civil specialties for a Bachelor degree:

- Computer systems and technologies;
- Communication equipment and technologies;
- Cybersecurity;
- Administrative and information security;
- Computer aided design.

"Artillery, Air Defence and CIS" Faculty

Scientific research for mechanical and aerospace engineering fields:

- Use of unmanned aerial vehicles for reconnaissance, surveillance and location of targets and objects in order to increase existing and acquire new capabilities in field artillery;
- Specialized software for research of the variation of the intraballistic parameters of artillery systems in the operation process;
- 82 mm multiple use training practical mine designed for short-range shooting and mortar crew training.



"Artillery, Air Defence and CIS" Faculty

Scientific research for electrical engineering and computer science fields:

- Automatic system for inverse synthetic aperture radars image reconstruction and object identification;
- Complex with voice controlled devices;
- Mobile technological complex "Smart Home";
- An application of steganography methods for information hiding in communication and information systems of the Bulgarian army;
- A software system for scripting confidential information by combining cryptographic and stenographic methods;

TPM

BG NMU – Shumen 26.09.2022

Multiplier Event BG NMU – Shumen 27.09.2022

KA2 Project EUCTSDS

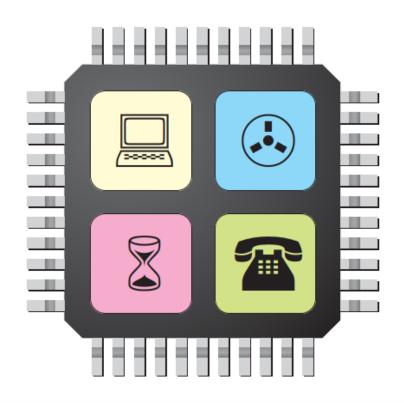
European Common Technical Semester for Defence and Security

N	o. Subjects	ECTS
1	Applied Informatics	3
2	Applied Automation for Engineering Systems	3
3	Integrated Weapon Systems	3
1	CSDD for Toohnical Systems	2
5a	Computer Networks	3
5a	Programming Languages	3
7a	Signal Processing	3
8a	Microcontrollers	3
5b	Propulsion Systems	3
6b	Dynamic of Flight	3
7b	Mechanics and Material Science	3
8b	Computer-Aided-Design and Numerical Analysis	3
9	Interdisciplinary Scientific Project	6
10	Foreign Languages (Bulgarian/French/Greek/Polish/Romanian)	2
11	Physical Education and Sports	2
echi	TOTAL	34

A Microcontroller is a computer dedicated to a single task

☐ Fundamental components:

Central Processing Unit


Memory

System Clock (Oscillator)

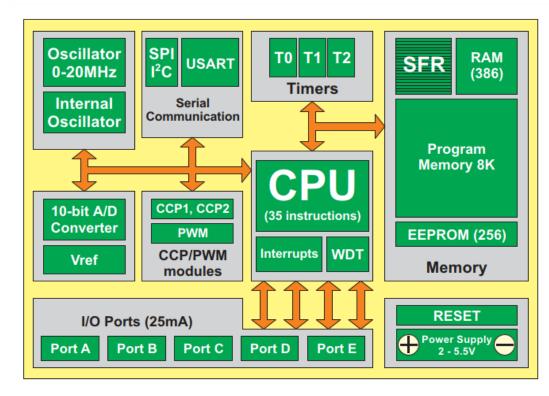
Peripherals

PIC is a family of Harvard architecture microcontrollers made by Microchip Technology, originally developed by General Instrument's Microelectronics Division. The name PIC initially referred to "**Programmable Interface Controller**".

PICs are popular with both industrial developers and hobbyists alike due to their low cost, wide availability, large user base, extensive collection of application notes, availability of low cost or free development tools, and serial programming (and re-programming with flash memory) capability.

Core architecture: The PIC architecture is distinctively minimalist:

- Separate code and data spaces (Harvard architecture)
- · A small number of fixed length instructions
- Most instructions are single cycle execution (4 clock cycles), with single delay cycles upon branches and skips
- A single accumulator (W), the use of which (as source operand) is implied (i.e. is not encoded in the opcode)
- All RAM locations function as registers as both source and/or destination of math and other functions
- · A hardware stack for storing return addresses
- A fairly small amount of addressable data space (typically 256 bytes), extended through banking
- Data space mapped CPU, port, and peripheral registers
- The program counter is also mapped into the data space and writable (this is used to implement indirect jumps).


Instruction set: A PIC's instructions vary from about 35 instructions for the low-end PICs to over 80 instructions for the high-end PICs. The instruction set includes instructions to perform a variety of operations on registers directly, the accumulator and a literal constant or the accumulator and a register, as well as for conditional execution, and program branching.

Family	ROM [Kbytes]	RAM [bytes]	Pins	Clock [MHz]	A/D Inputs	A/D Resolution	Comparators	8/16-bit Timers	Serial Communications	PWM Outputs	Others
Base-Line 8-	bit architecture	, 12-bit Instr	uction Wor	rd Length							
PIC10Fxxx	0.375-0.75	16-24	6-8	4-8	0-2	8	0-1	1 x 8	_	_	_
PIC12Fxxx	0.75-1.5	25-38	8	4-8	0-3	8	0-1	1 x 8	-	-	EEPROM
PIC16Fxxx	0.75-3	25-134	14-44	20	0-3	8	0-2	1 x 8	-	-	EEPROM
PIC16HVXXX	1.5	25	18-20	20	-	-	-	1 x 8	-	-	Vdd=15V
Mid-Range 8-	-bit architectur	e, 14-bit Inst	ruction Wo	ord Lengtl	h						
Mid-Range 8-	-bit architectur	e, 14-bit Inst	ruction Wo	ord Lengtl	0-4	10	1	1-2 x 8, 1 x 16		0-1	EEPROM
•						10 10	1 1	1-2 x 8, 1 x 16 1-2 x 8, 1 x 16	<u>-</u> -	0-1 0-1	EEPROM -
PIC12Fxxx	1.75-3.5	64-128	8	20	0-4		1 1 0-2		- - USART, I2C, SPI		
PIC12Fxxx PIC12HVxxx	1.75-3.5 1.75	64-128 64	8	20 20	0-4 0-4	10	-	1-2 x 8, 1 x 16	-	0-1	-
PIC12Fxxx PIC12HVxxx PIC16Fxxx PIC16HVxxx	1.75-3.5 1.75 1.75-14	64-128 64 64-368 64-128	8 8 14-64 14-20	20 20 20 20 20	0-4 0-4 0-13	10 8 or 10	0-2	1-2 x 8, 1 x 16 1-2 x 8, 1 x 16	USART, I2C, SPI	0-1 0-3	-
PIC12Fxxx PIC12HVxxx PIC16Fxxx PIC16HVxxx	1.75-3.5 1.75 1.75-14 1.75-3.5	64-128 64 64-368 64-128	8 8 14-64 14-20	20 20 20 20 20	0-4 0-4 0-13	10 8 or 10	0-2	1-2 x 8, 1 x 16 1-2 x 8, 1 x 16	USART, I2C, SPI	0-1 0-3	-
PIC12Fxxx PIC12HVxxx PIC16Fxxx PIC16HVxxx High-End 8-b	1.75-3.5 1.75 1.75-14 1.75-3.5 it architecture,	64-128 64 64-368 64-128 16-bit Instru	8 8 14-64 14-20	20 20 20 20 20	0-4 0-4 0-13 0-12	10 8 or 10 10	0-2	1-2 x 8, 1 x 16 1-2 x 8, 1 x 16 2 x 8, 1 x 16	USART, I2C, SPI USART, I2C, SPI	0-1 0-3 -	-

1878 r. HBY RABBOUY

MICROCONTROLLERS

PIC 16F887

RISC architecture

- 35 instructions
- All single-cycle instructions (4 clock cycles) except branches and skips
- · One accumulator (W)

Operating frequency 0-20 MHZ

Precision internal oscillator

- Factory calibrated
- Software selectable frequency range of 8MHz to 31KHz

Power supply voltage 2.0-5.5V

 Consumption: 220uA (2.0V, 4MHz), 11uA (2.0 V, 32 KHz) 50nA (stand-by mode)

Power-Saving Sleep Mode Brown-out Reset with software control option

35 input/output pins

- · High current source/sink for direct LED drive
- software and individually programmable pull-up resistor
- Interrupt-on-Change pin

8K ROM memory in FLASH technology

- Chip can be reprogrammed up to 100.000 times 256 bytes EEPROM memory
- Data can be written more than 1.000.000 times
 368 bytes RAM memory

A/D converter:

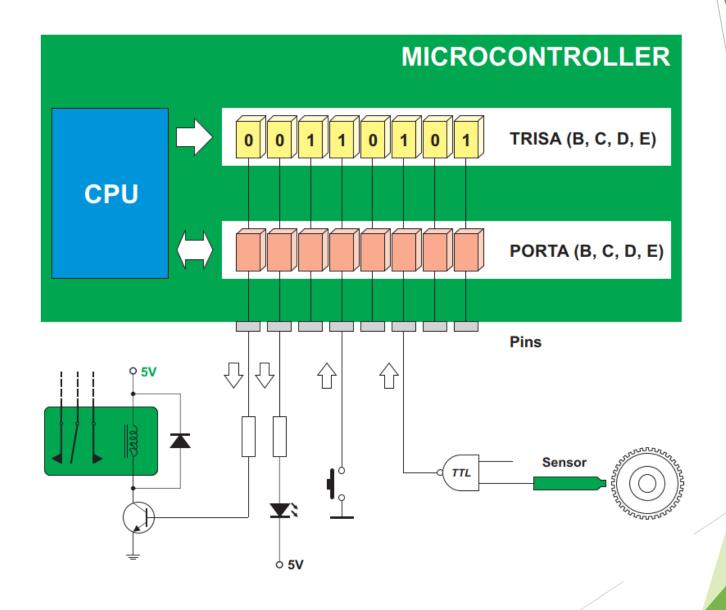
- 14-channels
- 10-bit resolution

3 independent timers/counters Watch-dog timer

Analogue comparator module with

- · Two analogue comparators
- Fixed voltage reference (0.6V)
- Programmable on-chip voltage reference

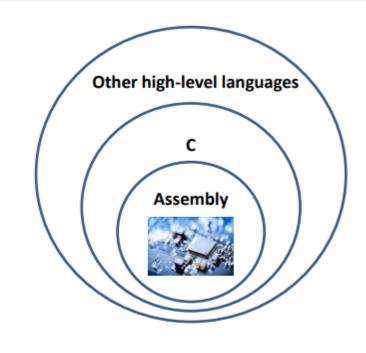
PWM output steering control

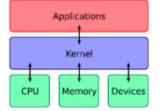

Enhanced USART module

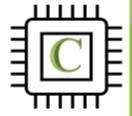
- Supports RS-485, RS-232 and LIN2.0
- Auto-Baud Detect

Master Synchronous Serial Port (MSSP)

· supports SPI and I2C mode




The C programming language


The C programming language has some characteristics that make it a bridge between machine language and high-level languages. Hence, one can use C for both general purpose programs (e.g., Doom, git) and system programs (e.g., the Linux kernel, device drivers)

It widely used in embedded systems
 (automotive, communications, radars etc.)

1878 r. HBY 3/8000

SIGNAL PROCESSING

- Definitions and Some Properties
- The Matlab Functions rand, randn, awgn, fft and ifft
- Example1: DTFT and DFT of a Finite-Duration Signal
- Example2: FFT of Sinusoidal Signal with DC Offset
- Example3: Magnitude Spectrum Representations
- Example4: Spectrum of Unit-Impulse and Unit-Step Functions
- Example5: Signal with Two Frequencies and Noise
- Example6: Power Spectrum and Parseval's Theorem
- Spectrum Leakage
- Example7: FFT size not equal to the signal length
- Example8: Signal length non-integer multiple of signal period
- Example9: Windowing for reducing spectral leakage

LTTA

BG NMU – Shumen 28.09 – 02.10.2022



